IMMW17, 18-23 September 2011 La Mola, Terrassa-Barcelona, Catalonia (Spain)

Stéphane Sanfilippo, PSI /ATK Technical Support, Co-ordination and Operation/ Magnets

PAUL SCHERRER INSTITUT

Swiss FEL Project (Status August 2011)

□ Magnets and Measurements for the SwissFEL Facility

- Magnet characteristics
- Measurement Plan (Serie Phase)
- Measurement systems
- SwissFEL Undulators
- Hard X ray undulator design
- Integrated Hall probe measurement system
- □Summary and perspectives

The SwissFEL Project (Status August 2011)

SwissFEL: source of high brilliance :peak of 1.3 10³³ photons/(s. 0.1 % bandwith. mm².mrad²)

- Aramis: 1-7 Å hard X-ray SASE FEL, In-vacuum , planar undulators with variable gap. User operation from mid 2017
- Athos: 7-70 Å soft X-ray FEL for SASE & Seeded operation . (2nd phase) APPLE II undulators with variable gap and full polarization control. User operation end 2019?
- **D'artagnan:** FEL for wavelengths above Athos, seeded with a High Harmonic Generation and Athos as radiator.

SwissFEL Conceptual Design Report, http://www.psi.ch/swissfel/

SwissFEL key parameters

Wavelength range	1 Å - 70 Å
Pulse duration	1 fs - 20 fs
e ⁻ Energy	5.8 GeV
e ⁻ Bunch charge	10-200 pC
Repetition rate	100 Hz

Site constraints

Power consumption < 5 MW Overall length < 900m

The SwissFEL Parameters

Overview of the components in the Concept Design Report, http://www.psi.ch/swissfel/

- Developments
- Prototype
- Test
- Installation
- Commissioning

For example :

- Injector;
- Linac modules;
- Undulator;
- Magnets;

SwissFEL science case, http://www.psi.ch/swissfel/

SwissFELSchedule March 2011

The SwissFEL injector test facility

Beam

Goal beam parameters

Parameter	Goal Test facility		
Charge - operation mode (pC)	10	200	
Projected norm. Emittance (mm.mrsd)	0.15	0.5	
Slice norm. emittance (mm.mead)	0.11	-0.43	
Uncorrelated energy spread (keV)	<50	-50	
Peak current (A)	100	300	
Energy (MeV)	250	250	

YAG screen image

Dark current

Test of overall system performance in SwissFEL 250 MeV Injector

24 August 2010: Inauguration The whole injector beamline will in 2015 be moved to the SwissFEL

Magnets for the 250 MeV Injector

Magnet type	Characteristics	Quantities to measure	Accuracy
			(if specified)
BC Dipole V2 (4) Measured mid 2010	B _{Nom} =0.4T,GFR~60 mm angle= 5 deg max @350 MeV Gap=30mm, L _{mag} =0.25m	Magn. Length, Field integral ∫Bdl ∫ Bdl=f(I), field maps (5 planes)	10-4
Quadrupoles (28)	G _{Nom} =25T/m, Φ=45mm, L _{mag} =0.175 m	Magn. Length, integrated gradient ∫Gdl ∫ Gdl=f(I)_field maps 200	10 ⁻⁴ 9)10 ⁻³
Gubolen	L _{Nom} -1953, Φ=802hm, L _{mag} =0.26m	Magn. Length, Field integral JBdl ∫ Bdl=f(I), field maps Magnetic axis position	10 ^{-₄} 0.1 mm
S band solenoid (17) Measured end 2009	B _{Nom} =0.1T, Φ=220mm, L _{mag} =0.75m	Magn. Length, Field integral ∫Bdl ∫ Bdl=f(I), field maps Magnetic axis position	10 ⁻⁴ 0.1 mm
Correctors (28)	B_{Nom} =20 mT, Φ =80mm, L_{mag} =0.05m	Magn. Length, Field integral	10-3

84 magnets built, measured and delivered (last ones in Sommer 2010)

Magnets and Measurements for the SwissFEL Facility

Magnets : 48 dipoles, 238 quads, 17 solenoids (injector), correctors, special magnets

48 dipoles of 6 types:

Working at energy from 7 MeV to 7 GeV
field ranges from 0.5 mT up to 1T (dump dipoles)
Magnetic length ranges from 0.1 m to 1 m

Location	Count	Length	Range	Energy	commissionin
Gun	1	0.12 (?)	0/30 degree	7 MeV	2016
Laser Heater	4	0.1	0-6 degree	130 MeV	2016
BC 1	4	0.25	0-5 degree	450 MeV	2016
Post BC 1	1	0.38 (?)	0/6 degree	450 MeV	2016
BC 2	4	0.5	0-3 degree	2 GeV	2016
Aramis Collimator	4	0.5	1 degree	2-7 GeV	2016
Aramis Beam Dump	1	2	6 degree	2-7 GeV	2016
Aramis Safety Dump	1	0.8	>2 degree	2-7 GeV	2016
Switch Yard	1	0.5	2 degree	3 GeV	2016
Switch Yard	3	0.5	2 degree	3 GeV	2016
Switch Yard	2	0.25	0.082 degree	3 GeV	2016
Switch Yard	2	0.25	0.038 degree	3 GeV	2016
Athos Seeding	4	0.25	0-0.5 degree	2.5-3.4 GeV	2018
Athos Seeding	8	0.5	0-2 degree	2.5-3.4 GeV	2018
Athos Seeding	4	0.25	0-0.5 degree	2.5-3.4 GeV	2018
Athos Beam Dump	1	1	6 degree	2.5-3.4 GeV	2016
Athos Safety Dump	1	0.8	>2 degree	2.5-3.4 GeV	2016
THz Source	2	?	?	50 MeV	2018

Bunch compressor dipole

Phase 2 2018

(source: S. Reiche, 14.04.11)

SwissFEL magnets (2)

238 quadrupoles of 4 types:

Working at energy from 0.15 GeV to 6 GeV •Field gradient ranges from 0.5 mT up to 50 T/m Magnetic length ranges from 0.03 m to 0.15 m Aperture diameters: 10 mm, 22 mm, 45 mm

Location	Count	Length	k-Value	Energy	Gap
.aser Heater	9	0.15	< 10	0.15 GeV	>30 mm
Booster 2	4	0.15	< 1	0.15-0.5 GeV	>30 mm
Pre-BC1	4	0.15	< 3	0.5 GeV	>30 mm
BC1	2	0.1	?	0.5 GeV	>30 mm
BC1	1	0.15	?	0.5 GeV	>30 mm
Post BC1	23	0.15	< 3	0.5 GeV	>22 mm
Post BC1	4	0.1	?	0.5 GeV	>22 mm
Linac 1	17	0.15	< 2	0.5-2 GeV	>22 mm
BC 2	10	0.15	< 3	2 GeV	>22 mm
BC 2	2	0.1	?	2 GeV	>22 mm
BC 2	1	0.15	?	2 GeV	>22 mm
Linac 2	3	0.15	< 1	2-3 GeV	>22 mm
Switchyard	13	0.15	< 2.5	3 GeV	>22 mm
Linac 3	14	0.15	< 1	2-6 GeV	>22 mm
Coll Aramis	1	0.15	< 1	2-6 GeV	>22 mm
Coll. Aramis	16	0.5	< 1.5	2-6 GeV	>22 mm
Coll. Aramis	2	0.1	?	2-6 GeV	>22 mm
Coll. Aramis	1	0.15	2	2-6-007	> 22 mm
Aramis	19	0.08	< 2	2-6 GeV	>12 mm
Aramis	24	0.03	?	2-6 GeV	>12 mm
Coll. Athos	11	0.15	< 2	3 GeV	>22 mm
Pre-Athos	14	0.15	< 2	2.5-3.4 GeV	>22 mm
Athos	19	0.08	< 4	2.5-3.4 GeV	>12 mm
Athos	24	0.03	?	2.5 GeV	>12 mm

(source: S. Reiche, 14.04.11)

Magnet type	Quantities to measure	Accuracy	Remark
		(if specified)	
Dipole (48)	Magn. Length, Field integral ∫Bdl ∫ Bdl=f(I), field maps (5 planes)	10-4	
Quadrupoles (238)	Magn. Length, integrated gradient ∫GdI	10 ⁻³	
	∫ Gdl=f(I), field maps Multipoles	10 ⁻³	
	Magnetic axis	0.05 mm	
	Roll	0.1 mrad	
Correctors ,special magnets	Magn. Length, Field integral		Feed back system Bandwidth 100 Hz

Specification and design at the Paul Scherrer Institute

- Design based on beam dynamics calculations, on cost/space constraints
- Design with POISSON 2D (pole profiles) and Opera 3D /TOSCA programs

Magnet design (in House) and construction (selected companies)

- Coil/magnet constructions performed in external companies
- Corrector construction and final assembly in house, the injector magnets
- Visual inspection (coil, current supply, thermocouple), check of test certificates
- Electrical integrity : insulation tests coil vs ground at 500 V
- Coil resistance measurements (1% variation accepted coil by coil)
- Leak and flow test at 30 bars during 12 hours (max 2 bars drop)
- Magnetic tests (hall probe, rotating coils, vibrating wire)

Rigorous and flexible Magnetic Measurement Plan is needed

To master all the critical steps from design to delivery

Motivations-aims

- •Context : Large scale of magnet production to be tested.
- (field ranges from 0.5 mT up to 0.5 T, issues on field strength, harmonics, mag. axis)
- •Guarantee the conformity of the magnet to the (tight) specifications:
 - Field integral value (at the level of 01-0.01%)
 - ✤ Harmonics value (at the level of the 0.1%)
 - ✤Quadrupole roll angles
 - \clubsuit Magnetic axis position of quadrupoles (50 μm RMS error) /fiducials
- Provide information for the installation (alignment) and the operation (hysteresis curve, ...).
- Increase the quality of measurements and the reliability of the results.
- Increase the efficiency (schedule is tight, measurements completed end of 2015 for the 0.1-0.7 nm line).

The working plan will include:

- Characterization of the measurement systems (systematic and random errors).
- Selection of the measurement equipment.
 - (w.r.t. specifications, allocated time and resource)
- Cross-checks measurements (some %) with different measuring techniques or systems.

Equipment	Units	Aim	Status	Comments
Hall probe system	1	integral and local field in dipoles Cross calibration of the Gdl	System operational	
Ø 45 mm rotating mole test bench	1	integral field gradient, harmonics and axis in 45 mm apertures quadrupoles	System operational	CERN / PSI collaboration
Ø 19 mm rotating mole test bench	1	integral field gradient, harmonics and axis in 19 mm apertur quadrupoles (linac)	Unit being tested at CERN; Procurement for the end of 2011;	CERN / PSI collaboration
Ø 10 mm rotating mole test bench	1	integral field gradient, harmonics and axis in undulator lines quadrupoles	Prototype in test at CERN; Procurement foreseen for 2012;	CERN / PSI collaboration
Moving Vibrating Wire system	1	Magnetic axis of quadrupoles (injector, linac, undulator lines)	System fully operational In October 2011	
FARO Arm	1	3-D survey of fiducials on quadrupoles and on measurement systems	Commercial product; At PSI since December 2010;	

Hall probe measurement bench

Transverse Hall Probe	Siemens SVB 601S1
Semicond. material	InAs
Active area	2.6 mm ²
I max	400 mA DC
Sensitivity	60 mV/T
<i>Hall Probe absolute accuracy</i>	0.1 to 0.3 G
<i>Hall probe resolution</i>	1 μT
Longitudinal range	2100 mm
Horizontal range	650 mm
Vertical range	360 mm
Maximum calibrated Field	3 1 T
Vertical range	360 mm
Maximum calibrated Field	3.1 T
Non linearity (0-1T)	<0.2 %
Temperature sensibility	70 ppm/°C

Measurement procedure:

- Leveling of the magnet
- Longitudinal variation on the probe (step of 2 mm, 20 ms time) (line integral in one axis)
- DAQ of voltage (HP/Agilent 3458A digital multimeter)

✤Post processing of the data

- ✓Local field, field integral, magnetic length
- ✓ Field quality
- ✓ 2D/3D field maps (volume in scanning five vertical planes)

Rotating coil (1) \varnothing 39 mm CERN mole

mole

Electronic rack

Gdl: **50 10⁻⁴ abs**. accuracy Multipoles : **10**⁻⁵ (@17 mm) reproducibility

<u>Abs</u> : E1 (E2=spare) for gradient <u>Cmp</u> :E1-M2-C+M2 for harmonics (reject Dipole and Quadrupole)

(PSI-CERN- collaboration, at the PSI since January 2009)

System used to measure the harmonics and the field gradient of the 45 mm aperture quadrupoles for the 250 MeV injector

Goals: Measure the harmonics and the field gradient of the 22 mm aperture quadrupoles for SwissFEL linac and matching sections

Prototype in test at CERN: PCB coils, monobloc,

(in development at CERN, at PSI end of 2012?)

Goals: Measure the harmonics and the field gradient of the 12 mm aperture quadrupoles in the SwissFEL undulator lines

Vibrating wire characteristics

Moving Wire Newport X-Y linear stages Support table A vibration detector DC/AC current source Lock-in amplifier HF2LI Quantum arm FARO, 2.4 m, 6 axis CuBe, 1-1.5 m, Φ=120 mm accuracy 2.5 μ m, resolution 0.5 μ m aluminum, 2 m 4 pick-up coils or photo diode, µm wire motion 100 ppm stability 2 channels, 2 signal generators, 50 MHz range+ Phase Lock loop resolution of the survey equipment is \pm +/- 28 μ m on 2.4 m

Vibrating wire system (August 2011)

Goal: Measure magnetic axis of the quadrupoles (linac, matching, undulators

Estimation of the errors

Error sources : Measuring system & method; environment; operator

Well defined procedure

An estimation of the all possible and known sources of systematic error is

Estimated contribution		
Environment	<5	[μm]
Resolution of vibration detection:	<1	[µm]
Locate wire relative to pin holes	<10	[µm]
Alignment of stages:	<1	[µm]
Faro arm:	<28	[µm]
Total (rms)	<30	[µm]

To be added in the budget: 30 µm error for the fiducialisation procedure with a laser tracker in the tunnel (Source K. Dreyer)

Total fiducialisation budget : $<50 \ \mu m$

Test of 100 % of magnets

•Magnetic tests should be performed systematically on all magnets of the machine;

•Magnetic axis measurements of quadrupoles with respect to external fiducials have to be systematically performed;

Cross-check measurements for the integrated field gradient and the magnetic center position will be performed on a statistical basis;

Flow-chart of the test-plan for the series production of SwissFEL magnets

Test of 100 % of magnets

Cascaded work with 1 designer, 2 teams for assembly and measurements

Important dates for production and tests:

- Linac/undulator series quadrupoles 2012-2015
- Matching quadrupoles: 2013
- Dipoles for the hard x-ray line: 2013-2015
- Magnets for soft x-ray line: Not before 2016

Undulators for the SwissFEL Beam lines

Time schedule for SwissfEL undulators

For SwissFEL planned:

PAUL SCHERRER INSTITUT

ARAMIS hard x-rayU15, 12 modules2016ATHOS soft x-rayU40/UE40, 12 modules~ 2018

Milestones (U15)

 U15 full prototype (265 periods) : autumn 2012 mechanics magnetics vacuum

Qualify the prototype for the series:

Tests in 250 MeV linac -2013

•U15 production: 2013 - 2015•Field optimization: Mid 2015 - Beginning 2016

Installation finished : Mid 2016

Hard X-ray Undulator U15 parameters

Туре	Hybrid - In Vacuum					
# units		1	2			
Period		15				
# periods		266 (inclu	ding ends)			
Magnetic length		39	90		mm	
K-values	1.8	1.4	1.2	1.0	-	
GAP	3.2*	4.2	4.7	5.5	mm	
Bz max	1.27	1	0.85	0.7	т	
Br	1.25			т		
HcJ	>2400 kA/				kA/m	
Magnet size	WxHxT=30x20x2.25			mm		
Pole size	Wb/WtxHxT=20/15x16.5x3			mm		
Max GAP	20.0			mm		
ΔGAP		0.	.3		μm	

*Minimum magnetic GAP (Vacuum GAP=3mm)

Permanent Magnets

•Vapor diffusion of Dy into the machined magnet (Hitachi Metals Ldt.) $Nd_{1-x} Dy_x Fe_{14}B$ •Increase stability without reduction of remanence (Hc_i~2300 kA/m).

> T.Schmidt, S. Reiche, Undulators for the SwissFEL (FEL,2009)

New design for all types

High stiffness : close support structure;
Frame : Cast mineral bases and sides (cheap, good damping, light, non-magnetic)
Cost effective extruded and wire eroded aluminum keepers

In Vacuum Permanent Magnet Undulator U15

Prototype U15 undulator - Optimisation

- •gap adjustment with system of 4 wedges :3 mm-30 mm range (required precision 0.3 μm)
- •Advantage: Support the structure everywhere.
- servo motor driven, roller spindel with 1mm/turn
- no gear -> backslash minimized
- Alignment with 4 cam-shaft movers:

SLS system with 5 degrees of freedom :vertical and horizontal direction and all angles, tilt, roll and yaw

U15 Tolerances

Gap setting	0.3 μm
Position y	± 30 μm
Position x	± 200 μm
Trajectory straightness	1 μm
Phase error	1°
Temperature ΔT	0.1°

T.Schmidt, S. Reiche, Undulators for the SwissFEL (FEL,2009)

Status (September 2011) System in development Test, end of 2011

Tests of the U14 CPMU at the SLS (10-12/2010)

U14 joined project SPring-8 / Hitachi Metal Ltd / PSI

 Design and room temperature optimization: Hitachi Metal Ltd/ SPring-8

LN2 measurements:SPring-8, vacuum measurement system developed by Takashi Tanaka, proof of principle at gap = 7mm
LN2 Test (135 K) at PSI with full control of cooling system and for the entire gap range (4 mm-6 mm)

Installed in the SLS beam line beginning 2011

Experienced gained for SwissFEL In Vacuum Permanent Undulator (IVPMU) : "In situ magnetic measurement" system (T. Tanaka et al., Phy. Review. B 12 (2009))

Integrated measurement system for U15

1) Magnetic optimization of IVPMU :

Measurement w/o the vacuum chamber
Automatized adjustment of pole heights (avoid swapping PM) based on Hall probe trajectory and phase error measurements.

- Dismounting of the Out-vacuum beam /out vacuum shafts/PM array;
- Insert the vacuum chamber/ PM array;
- Hall Probe measurements;
- Adjustment of the gap value using the out vacuum shafts.

Integrated system

- 3D Hall prob vacuum
- Hall probe and tooling on a common linear motor attached inside to the mineral frame for measurements
- Similar system with piezo walk motors for measurements after installation of the vacuum chamber

Status (September 2011) Hardware procured Software in development

Technical challenges

- Small aperture quadrupoles (Ø22 mm, Ø12 mm) and length (150 mm, 80 mm):
- Field quality requirements (gradient, multipoles at 0.01-0.1 %)
- Magnetic axis (below 30 μm)
- Closed in vacuum undulators (difficult access for measurements)
- Undulators short period and with variable gap
- Long length (4 m)

Resource Issues

- Procurement of main equipment is running. One critical item: field measurements on *∞*12 mm quads;
- About personnel : ~180 magnets and 12 undulators to be designed, produced and tested till 2016; Allocated manpower for 100% of the tests (other PSI running facilities at PSI: SLS, HIPA, PROSCAN)

SwissFEL magnets/undulators (phase 1-Hard X-ray line)

- Quadrupole :Design (on-going), ends in 2011- Prototype and series measurements 2012-2014
- Dipoles :Design in 2012-2013 Series measurements :2013-2015
- In vacuum U15 undulators;
 - Prototype : Autumn 2012
 - Series production 2013-2015
 - Magnetic tests: 2014-2016

Magnetic measurement systems

- Commissioning of the Ø19 mm rotating coil system *beginning of 2012*;
- Ø10 mm rotating coil system expected *end of 2012*;
- Evolution of the vibrating wire towards a "rotating vibrating wire" to measure the also multipoles (*expected for the end of 2012*);
- Integrated Hall probe measurement system ready for the prototype U15 , *end 2011*;
- Hall probe measurement system inside the vacuum chamber, *end 2011-beginning 2012*.
- Adaptation of the already built systems: moving wire and pulse wire systems (on-going).

Thank you for your attention

Any questions?

S. Reiche (PSI) – Status of the SwissFEL facility at the Paul Scherrer Institute (FEL2011);

M. Negrazus et al. PSI) - Magnet Design and Measurement Results of the Solenoids and Bunch Compressor Bending Magnets of the SwissFEL Test Facility (MT22);

C. Wouters et al. (PSI) - Vibrating Wire Technique and Phase Lock Loop for Finding the Magnetic Axis of the Quadrupoles in the Swiss Free Electron Laser (MT22);

IMMW17

O. Dunkel (CERN) – A rotating coil array in Mono-bloc Printed circuit Technology for Small Scale Harmonic Measurements at CERN

J. G. Perez (CERN) - Measurements of small aperture Quadrupoles for Linac4 and Clic Projects

V. Vrankovic (PSI) - Experiences with the single streched vibrating wire test stand at PSI

C. Petrone (CERN) – Measuring field strength and multipoles of small apertures quadrupoles with vibrating wire

Magnets for the 250 MeV Injector test

The SwissFEL injector test facility

Goal beam parameters

Parameter	Goal Test facility		
Charge - operation mode (pC)	10	200	
Projected norm. Emittance (mm.mrsd)	0.15	0.5	
Slice norm. emittance (mm.mead)	0.11	-0.43	
Uncorrelated energy spread (keV)	<50	-50	
Peak current (A)	100	300	
Energy (MeV)	250	250	

Test of overall system performance in SwissFEL 250 MeV Injector

Phase 1: Electron source and diagnostics

05+##+++

BPM+screen

- March 2010 to May 2010
- Characterization of the electron source
- Installation of remaining machine behind shielding wall

Phase 2: Phase 1 + (some) S-band acceleration

- August 2010 to December 2010 (official injector inauguration 24 August)
- Emittance damping in S-band booster (invariant envelope)
- · Jaguar (Nd:YLF) laser
- Phase 3: The full machine

 - End of 2010 / early 2011 (installation bunch compressor and X-band cavity)
 - Pulsar (Ti:Sapph) laser

24 March 2010: First beam

24 August 2010: Inauguration

Magnets for the 250 MeV Injector

CHERRER INSTITUT

Magnets for the 250 MeV Injector (2)

Magnet type	Characteristics	Quantities to measure	Accuracy
			(if specified)
BC Dipole V2 (4) Measured mid 2010	B _{Nom} =0.4T,GFR~60 mm angle= 5 deg max @350 MeV Gap=30mm, L _{mag} =0.25m	Magn. Length, Field integral ∫Bdl ∫ Bdl=f(I), field maps (5 planes)	10-4
Quadrupoles (28)	G _{Nom} =25T/m, Φ=45mm, L _{mag} =0.175 m	Magn. Length, integrated gradient ∫Gdl ∫ Gdl=f(I)_field maps 200	10 ⁻⁴
Gul Slepto 6	L _{Nom} (53), Φ=802nm, L _{mag} =0.26m	Magn. Length, Field integral ∫Bdl ∫ Bdl=f(I), field maps Magnetic axis position	10 ⁻⁴ 0.1 mm
S band solenoid (17) Measured end 2009	B _{Nom} =0.1Τ, Φ=220mm, L _{mag} =0.75m	Magn. Length, Field integral ∫Bdl ∫ Bdl=f(I), field maps Magnetic axis position	10 ⁻⁴ 0.1 mm
Correctors (28)	B_{Nom} =20 mT, Φ =80mm, L_{mag} =0.05m	Magn. Length, Field integral	10 ⁻³

84 magnets built, measured and delivered (last ones in Sommer 2010)

S Band solenoids: Axis measurements

Not a real magnetic axis measurements Looking for an extremun of the main field component

Transverse position Quadratic fit of the magnetic field as a function of X for one Z position

V. Vrankovic et al., IMMW16 (2009)

17 solenoids measured with a single axis Hall probe :
•XY field maps every z =20 mm.
•The offsets ΔX ΔX are defined as the difference

•The offsets $\Delta X_{c'} \Delta Y_c$ are defined as the difference from minimum (maximum) of a quadratic fit of the measured magnetic field (X_c, Y_c) at each z with respect to the geometrical center.

•Inside the coils ΔX_c , $\Delta Y_c \le 1 \text{ mm} (\Delta B \text{ equiv. to } 1 \mu T)$ •Between the coils the error becomes big: results are not relevant (magnet too homogeneous).

Bunch compressor dipoles

B [T]	0.1
Inner Diameter [mm]	220
Total length [m]	0.75
Number of coils	2
Windings per Coil	150
Max. Current [A]	200
Power[kW]	5.7

Field map in the magnet horizontal mid-plane,I = 200 A,
±700 mm (along the beam direction)
±150 mm (across the beam direction)

 Δ Bdl <±10⁻⁴ *In the specs!*

1	Magnet	Field in the center [T]	Field integral [Tm]	Average effective length [mm]
	#1	0.46005	0.13935	302.9
	#2	0.46005	0.139219	302.6
	#3	0.46011	0.139197	302.5
	#4	0.46005	0.139219	302.6
	Average	0.46007	0.13925	302.65
	Sigma (units)	0.7	5.0	5.8

M. Negrazus et al., MT22 (2011)

vapor diffusion of Dy into the machined magnet (Hitachi Metals Ldt.)

increase of stabilization without reduction of remanence

